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Abstract

Hyporheic exchange influences hydrologic transport and water quality through tran-

sient storage, which extends solute transit time, and leads to mixing of surface water

and groundwater. Despite its importance, estimating the extent and spatiotemporal

variability of the hyporheic zone remains challenging due to limitations in assessing

the subsurface with discrete point-scale sampling. Analysis of time-lapse electrical

resistivity (ER) data from tracer studies has shown potential to ameliorate such limita-

tions. However, its utility in objectively delimiting hyporheic extent and quantifying

changes in surface-groundwater exchange has been impeded by reliance on qualita-

tive analysis of hyporheic extent or the use of a priori assumptions about data quality

and signal strength. This study applies a novel unsupervised clustering method to

time-lapse ER models derived from a benchmark dataset collected throughout base-

flow recession in a mountain stream. We demonstrate that unsupervised clustering

of inverted ER model time series can delimit hyporheic extent by distinguishing sol-

ute transport signals from noisy background inversions and identify functional zones

defined by unique transport characteristics. We found that the structure of these

zones was stable even as discharge changed by an order of magnitude, likely due to

morphological constraints in this steep, narrow valley. Compared to traditional

methods utilizing a priori thresholds to delimit hyporheic extent, clustering is robust

to unintentional variations in tracer breakthrough curves that are typical of field-

based studies. Therefore, clustering of inverted ER models represents a more robust

and data-driven functional zonation representation of hyporheic exchange than has

been possible with point-scale sampling or transport modelling, which usually

assumes a single well-mixed hyporheic zone.
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1 | INTRODUCTION

The exchange and mixing of surface and groundwater in stream corri-

dors exert a strong control on hydrologic transport, biogeochemical

reactions, and the existence of ecological refugia (Harvey et al., 2018;

Harvey & Bencala, 1993; Lewandowski et al., 2019; Ward, 2016).

Despite decades of research, estimating the extent and spatiotempo-

ral variability of the hyporheic zone remains challenging due to the

structural heterogeneity of the subsurface and the difficulty of making

direct observations beyond a few discrete points (i.e., wells and pie-

zometers; González-Pinz�on et al., 2015). Numerous studies have

sought to determine how the extent of hyporheic exchange responds

to variable hydrologic conditions, typically with respect to the implica-

tions for which biogeochemical reactions can occur and their reach-

scale significance, but results are often in conflict between sites and

few generalizable behaviours have been identified (Ward, 2016). The

capability for predictive modelling is similarly limited either by overly

simplistic representation of the hyporheic zone as a single well-mixed

storage zone (Marion et al., 2003; Wondzell, 2006) or the rarity of suf-

ficient data needed to inform accurate representation of transport

heterogeneity at scales beyond individual channel features (Schmadel

et al., 2017; Ward et al., 2017). Consequently, advances in observing

and modelling the dynamic behaviour of hyporheic exchange will

depend on developing data-driven techniques that can constrain the

spatiotemporal complexity of hyporheic exchange at functionally

meaningful and tractable scales (Magliozzi et al., 2018).

Numerous definitions of the hyporheic zone have been proposed,

with specific criteria reflecting the primary discipline of a given study

(Gooseff, 2010; Knapp et al., 2017; Tonina & Buffington, 2007;

Ward, 2016; White, 1993). A primary challenge in defining the extent

of the hyporheic zone originates from the heterogeneity of nested

hydrological flow paths that govern both reach-scale hydrologic trans-

port and the significance of biogeochemical reactions (Poole

et al., 2008). To incorporate prior studies and promote interdisciplin-

ary synthesis, Ward et al. (2016) suggested that the region encom-

passing the hyporheic zone must (1) be in the saturated subsurface,

(2) include hydrological flow paths that originate from and return to

surface water, and (3) interact with the stream water within a speci-

fied temporal scale related to hydrologic or biogeochemical processes

of interest. While this definition is flexible, it remains practically diffi-

cult to simultaneously delineate both the spatial and temporal bound-

aries implied by this definition in an actual field study.

Interactions between surface water and the hyporheic zone are

most often assessed through conservative-solute tracer injections

(Harvey et al., 1996; Harvey & Bencala, 1993; Kasahara &

Wondzell, 2003; Ward et al., 2019). The resulting solute breakthrough

curves (BTCs) reflect the effects of advection, diffusion, and transient-

storage processes (both surface and subsurface) that are integrated

over space and time (Stream Solute Workshop, 1990). Point-scale

subsurface sampling combined with surface-water data is used for

inverse model tuning to estimate lumped transport and storage

parameters, but the results are often not clearly meaningful (Marion

et al., 2003; Wondzell, 2006). Additionally, main-channel BTC

observations reflect the convolution of multiple transient-storage

zones and their processes, yet these compartments are known to

exhibit distinct biogeochemical functions, especially aerobic versus

anaerobic processes, making the need to parse their effects important

in many studies (Knapp et al., 2018). Despite the computational feasi-

bility of numerically modelling spatially explicit heterogeneity of

coupled transport and biogeochemical reactions (e.g., Marzadri

et al., 2011), it is rarely possible to overcome issues of equifinality in

parameterizing multiple storage-zone models from surface and well

BTC observations alone (e.g., Bottacin-Busolin, 2019), especially for

reactive solutes (e.g., Kelleher et al., 2019).

The use of time-lapse electrical resistivity (ER) imaging of hypor-

heic exchange during tracer injections was introduced over a decade

ago (Singha et al., 2008; Ward et al., 2010b) as a promising method

for characterizing time-varying hyporheic extent. Fundamentally, ER

methods utilize surface measurements of electrical potentials from

induced current flow to estimate subsurface properties that are sensi-

tive to the introduction and transport of electrically conductive solute

tracers (Singha et al., 2008). Since its adaptation to stream tracer stud-

ies, ER imaging has been employed to investigate how hyporheic

exchange, especially its extent, responds to in-channel downed wood

(Doughty et al., 2020), seasonal flow recession (Ward et al., 2012;

2014), flow regulation by dam operation (Cardenas &

Markowski, 2011), and structural variations in bedrock boundaries

(Rucker et al., 2021).

Successful application of ER for delimiting and quantifying

changes in hyporheic exchange has been impeded by reliance on qual-

itative analysis of hyporheic extent or a priori assumptions about the

consequences of data quality and inversion decisions on the final

model images when more quantitative analyses are attempted. Prior

studies have relied on the evaluation of time-lapse 2D ER model

images to visually compare hyporheic extent between times of data

collection (e.g., Ward et al., 2010b), largely ignoring well-known sensi-

tivity issues (e.g., Day-Lewis et al., 2005). This approach is flexible but

does not allow for robust quantitative comparison or prediction

between stream reaches or injections. Alternatively, some studies

(e.g., Doughty et al., 2020) have analysed spatially lumped changes in

bulk apparent resistivity data, which provide a basis for quantitatively

describing temporal variations in exchange but do not include the spa-

tially resolved information inherent in the inverted ER models. Finally,

a few studies (e.g., Ward et al., 2010b; 2012) have applied a priori sig-

nal thresholds to delimit and estimate hyporheic extent from model

images. Unfortunately, the resulting estimates of hyporheic extent are

particularly sensitive to the subjectively selected change in resistivity

(Δρ) threshold (Ward et al., 2010b), so only relative changes, not the

actual extents, are meaningful. Application of a standard threshold

across multiple datasets (i.e., jΔρj > 2.5%) does not account for actual

differences in either the quality of the data or the relative strength of

tracer injection signals compared to noise.

In order to more objectively evaluate hyporheic extent, this study

introduces a novel method for analysing inverted ER images based on

unsupervised time-series clustering. Our approach simultaneously

addresses the challenges of resolving the extent and spatial
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heterogeneity of hyporheic exchange during tracer injections. Unsu-

pervised clustering is a data-mining technique in which time series are

objectively grouped based on structures within the data rather than a

priori assumptions (e.g., Aghabozorgi et al., 2015; Fu, 2011). We apply

unsupervised clustering to time-lapse ER models from a benchmark

dataset (Ward et al., 2012; 2020) to assess how the extent and het-

erogeneity of hyporheic connectivity changes during baseflow reces-

sion in a headwater stream. Prior work in this steep, highly

constrained valley showed that riparian water-table head gradients,

the extent of tracer transport into riparian zones, and hyporheic trans-

port timescales are quite stable even as streamflow changes by three

orders of magnitude (Voltz et al., 2013, Ward et al., 2016). Yet, other

work suggests that hyporheic flow path geometries change during

recession (Ward et al., 2017). Thus, this dataset provides opportunity

to assess whether the structure of transport heterogeneity—that is

the extent and location of more and less advective regions—within

the hyporheic zone is responsive to seasonal changes in surface

hydrologic forcing. We expect that the influence of constant valley

morphology and steep down-valley gradients in this system will result

in stable structuring of both cross-sectional hyporheic extent and

exchange heterogeneity regardless of changing surface flows.

In this study, we test that unsupervised clustering of inverted ER

model time series from tracer injections can be used to (1) delimit

hyporheic extent by distinguishing solute transport signals from noisy

background inversions (adjacent hillslopes or at depth), and (2) charac-

terize transport heterogeneity within the hyporheic zone in terms of

spatially defined functional zones. Clustering of inverted ER models,

therefore, represents a shift towards a data-driven functional zonation

representation of hyporheic connectivity, which is akin to other facies

frameworks in which complex heterogeneity is simplified by charac-

terizing compartments for which in-group heterogeneity is smaller

than between-group differences (e.g., Delforge et al., 2021; Hermes

et al., 2020; Hou et al., 2019; Sassen et al., 2012; Wainwright

et al., 2014).

2 | METHODS

The principles of ER data collection and its application in stream tracer

studies have been described extensively by prior studies (González-

Pinz�on et al., 2015; McLachlan et al., 2017; Singha et al., 2008; Ward

et al., 2010a; 2010b; 2012; 2014). Briefly, ER measurements are sen-

sitive to lithology, porosity, connectivity of pore spaces, pore fluid

conductivity, subsurface temperature, and subsurface moisture con-

tent. The introduction of an electrically conductive tracer alters pore-

fluid conductivity, thereby allowing detection of solute transport

through the subsurface (Singha et al., 2008). Data are collected by

applying an electric current (I, A) to the ground surface and measuring

the resulting potential difference (V) between two locations to calcu-

late the geometry-dependent resistance (R, Ω) by Ohm's Law (R = V/

I). Then, depending on the arrangement of electrodes, a geometric

factor (K) can be calculated for each measurement (see Binley, 2015a)

which is used to convert R to apparent electrical bulk resistivity

(ρ, Ωm) as ρ = KR. Apparent resistivity can, in turn, be converted to

apparent electrical bulk conductivity (σ, S/m) as σ = 1/ρ. We present

results for this study in terms of σ, which is more intuitively related to

fluid conductivity (σfl) typically measured in surface water or wells

during tracer studies.

2.1 | Injections and ER collection from a
benchmark dataset

We use ER survey data and main channel σfl from tracer studies con-

ducted in a forested second-order stream within the H. J. Andrews

Experimental Forest, Oregon (44�130N, 122�150W) during the summer

of 2010 (Ward et al., 2020). This dataset has been previously used to

examine hyporheic connectivity throughout baseflow recession (Ward

et al., 2012; 2014) and, therefore, serves as a useful benchmark for

comparison of new methods. We focus our analysis on four 48-h

tracer tests that were conducted in a 50-m reach of a headwater

stream in Watershed 3 (101 ha) for discharges decreasing from 35 to

4 L s�1. All injection solutions contained only sodium chloride (NaCl)

as a conservative tracer. A two-week recovery period was observed

between injections. ER data were collected using dipole-dipole config-

urations with an IRIS Syscal Pro (Orleans, France) on lateral transects,

each consisting of 12 surface electrodes with �1 m spacing (Figure 1).

The average stacking error on repeat measurements within this data-

set was 0.2% across all data while the average reciprocal error (col-

lected for 55 of 323 quadripoles) was 1.3% (Ward et al., 2014). While

data were collected from six transects, we consider Transects 2 and

3 as only they have complete data from all four injections. They also

represent different channel morphologies, with Transect 2 crossing a

more constrained section, while Transect 3 crosses a wider portion of

the stream with notably more large boulders.

F IGURE 1 Site location and instrumentation map for WS3 in the
H. J. Andrews Experimental Forest, located in the Cascade Range of
Central Oregon. Main channel electrical conductivity sensors are
identified as A–C from upstream to downstream locations in the text.
Modified from Ward et al. (2012).

SINGLEY ET AL. 3 of 14



2.2 | ER inversions

We inverted resistance data from surface measurements with R2

(Binley, 2019; v2.7b compiled for Unix), which uses a regularized

objective function and weighted least-squares regression approach to

model and solve current flow in a quadrilateral finite-element mesh

for each transect and injection (Binley, 2015b; Binley &

Kemna, 2005). The number of nodes in the inversion meshes for this

study ranged from 2394–2698 due to differences in transect widths.

Each inversion mesh was generated with 25-cm spacing horizontally

and 20-cm spacing vertically down to a relative depth of 6 m, with

spacing doubling to each node thereafter. In all cases, we extended

the inversion mesh at least 100 m horizontally beyond the outermost

electrode locations and to a depth of about 150 m to reduce bound-

ary effects. Surface topography for the inversion mesh was linearly

interpolated between surveyed electrode locations. The duration of

data collection following the end of each injection varied. Therefore,

for comparability between injections, we limited analysis to data col-

lected between 8 h prior to and 96 h after the beginning of each injec-

tion – a period for which data was available for each transect during

all injections.

For the time-lapse inversions we utilized a difference method

wherein the first timestep data and ER model are used as a starting

model and target dataset to which subsequent inversions are regular-

ized (Binley, 2015b). Changes in conductivity (Δσ) from the starting

model are provided for each period of collection (timestep, hereafter)

during the inversion process. For each injection and transect we calcu-

lated the diagonal of the resolution matrix as described by Binley and

Kemna (2005) to quantify nodal sensitivity within the inversion mesh.

We then used that matrix to select nodes with a resolution of at least

1%, meaning that at least 1% of the node's modelled conductivity was

independent of adjacent nodes, for subsequent analyses (Binley &

Kemna, 2005; Ward et al., 2012). Areas with resolution values <1%

were parts of the inverted model for which temporal changes in con-

ductivity could not be meaningfully interpreted.

2.3 | Unsupervised clustering of time-lapse ER
models

As an alternative to qualitative assessments of hyporheic extent, spa-

tially lumped analysis, or a priori selection of signal thresholds, we

used unsupervised hierarchical clustering of nodal Δσ time series to

identify clusters of nodes for which within-group differences in tracer

response are smaller than between-group differences. In so doing, we

(1) estimated the spatial arrangement of functional zones, (2) identified

characteristic Δσ BTCs for each cluster, and (3) estimated total hypor-

heic extent. Applying this method to time-lapse ER models identifies

emergent patterns within the model outputs and retains both spatial

and temporal information but does not require selection of arbitrary

cutoffs in Δσ to determine where meaningful changes have occurred.

2.3.1 | Clustering of nodal ER time series

From the time-lapse ER models, we calculated a metric describing the

dissimilarity between pairs of nodal Δσ time series (Figure 2a–c). To

do so, we calculated the absolute value of Euclidean distances for all

F IGURE 2 Conceptual depiction of unsupervised clustering analysis of time-lapse ER models from tracer injections. At each timestep
(a) percent change in modelled conductivity (Δσ) relative to the pre-injection condition is generated, then (b) time series of Δσ are extracted for
each node in the inversion mesh, (c) Euclidean distances are calculated and summed for each pairwise comparison of nodes to construct a
dissimilarity matrix, which is then used to (d) hierarchically cluster nodes. The resulting clusters can then be analysed for (e) characteristic BTCs
and (f) approximate spatial extent.
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pairwise combinations of the Δσ time series, at each timestep, using

the TSclust package in R (Montero & Vilar, 2014; R Core Team, 2019).

The absolute Euclidean distance (d) between the time series for any

two nodes ( j and k) with Δσj,t and Δσk,t as their respective percent

change in electrical conductivity at timestep t is:

dtj,k ¼ Δσj,t�Δσk,t
�� ��: ð1Þ

We summed these distances for t between 8 h prior to (ti) and

96 h after (tf) the injection commenced to give the individual elements

of the dissimilarity matrix (D):

Dj,k ¼
Xtf

ti
dtj,k: ð2Þ

We opted to use Euclidean distances to construct a dissimilarity

matrix because they represent the simplest distance metric that

retains the physical meaning of the time-series values (no unit conver-

sion) and are sensitive to both scaling and synchronicity in structure

amongst time series, unlike other metrics used for time-series compar-

isons (e.g., Aghabozorgi et al., 2015; Mueen & Keogh, 2016). Conse-

quently, the resulting distance Dj,k is indicative of the similarity the in

both shape and timing of the two time-series in response to the tracer

transport.

To identify similarities in hyporheic exchange processes within

the subsurface, we then applied the built-in agglomerative hierarchical

clustering algorithm in R (hclust; R Core Team, 2019) to D (Figure 2d).

Individual nodes are first assigned to their own clusters, then at each

subsequent iteration the most similar clusters are merged until a single

cluster is formed. Here we use the default complete-linkage method

to identify the nearest clusters to be merged at each step. The result-

ing dendrogram consists of n�1 branching events, where n is the

number of nodes retained from the ER inversion mesh with resolution

>1%. The value of n will vary depending on electrode configuration in

the field, data quality, and decisions about the discretization of the

differential equations during the inversion process. For this study,

n ranged from 300–408.

2.3.2 | Identifying the number of clusters and
characteristic BTCs

There is no best approach to selecting the “correct” number of clus-

ters or how to cut a dendrogram (Warren Liao, 2005) and many differ-

ent cluster-validity indices have been proposed, as summarized in a

decadal review by Aghabozorgi et al. (2015) and in application to

time-lapse ER models by Delforge et al. (2021) or other environmental

phenomena (e.g., Savoy et al., 2019). We pass the dendrogram data

through a non-parametric permutation-based test of within- versus

between-branch variances (Park et al., 2009) to determine whether

each branching event results in the formation of clusters with statisti-

cally different responses to the tracer addition. Significant branching

events are identified if they satisfy a Bonferroni corrected p-value

threshold (p < 0.05/[n�1], where n is the number of nodes). In select-

ing this approach, we base cluster retention on patterns and struc-

tures that exist within the data in a way that allows for an asymmetric

combination of non-significant branching events (Park et al., 2009).

With this method, any number of clusters that is statistically sup-

ported can be retained depending on the end goal or application of

the resulting information. We present results for four statistically

unique clusters for each transect and injection. This decision was

made because objectively parsing the hyporheic zone into a few func-

tional zones signifies an advance beyond representing it as a single

well-mixed compartment while not exceeding the complexity repre-

sented in widely available, computationally inexpensive multiple tran-

sient storage zone models (Briggs et al., 2009; Choi et al., 2000; Kerr

et al., 2013; Knapp et al., 2017; Neilson et al., 2010).

After identifying four statistically unique clusters and the mem-

bership of individual nodes, we determined the characteristic Δσ BTC

for each cluster by calculating the mean and standard error (SE) of

individual nodal Δσ values within a cluster by timestep (Figure 2e).

We calculated the SE instead of the standard deviation as the number

of nodes within each cluster can vary largely, with some clusters

potentially including fewer than 10 nodes while others may include

hundreds.

2.3.3 | Identifying and delimiting extent of
hyporheic exchange

Next, we identified which of the retained clusters represent the effec-

tive hyporheic zone – that is, which groups of nodes have time series

that are reflective of tracer transport at the timescale of interest for a

particular injection as informed by the BTC observed in the stream.

We used the dendrogram and cluster-wise characteristic BTCs to dis-

tinguish clusters comprising the effective hyporheic zone and those

that behave as non-responsive “reference” nodes (i.e., “HZ1” and

“HZ2” vs. “Ref” in Figure 2e). Specifically, reference nodes lack BTC

structure related to the tracer injection. However, reference nodes

may exhibit some temporal patterns due to variations in temperature

and soil moisture or the spatial smearing of signals through the mesh

by the inversion algorithm (Day-Lewis et al., 2005). In contrast, we

interpret clusters representing the effective hyporheic zone as exhi-

biting BTCs with systematic increases in σ (decreases in ρ) from the

pre-injection state, which is indicative of conductive solute transport

(Singha et al., 2008; Ward et al., 2010b). If such qualitative distinctions

between BTC shapes for reference and hyporheic clusters were not

obvious, we utilized the branching structure of the dendrogram to

inform decision making.

We then qualitatively categorized the clusters comprising the

effective hyporheic zone based on the speed and magnitude of their

Δσ BTC as “fast”, “moderate” or “slow”. These descriptors reflect the

relative Δσ BTC behaviours that indicate differences in advective ver-

sus diffusive solute transport amongst the clusters, with “fast” being

the most advective (i.e., “HZ1” in Figure 2e). Ward et al. (2010a)
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discuss characterization and analysis of BTCs spanning the advective-

diffusive continuum and their expression in space throughout a tracer

injection. Since these designations denote relative differences

amongst nodes within a single transect and for a single injection, we

are not required to set a priori criteria (i.e., an exact value or range of

median arrival times) that define each category apart from being sta-

tistically different from one another (see Section 2.3.2). Thus, our

analysis of differences in hyporheic transport is data driven. Finally,

we calculated the approximate extent of the clusters comprising the

effective hyporheic zone based on the location of nodes within the

inversion mesh.

2.4 | Comparison to threshold-based estimates of
hyporheic extent

Prior studies (e.g., Ward et al., 2010b; 2012) have estimated hyporheic

extent based on a priori selection of Δρ (or Δσ) thresholds. Because

the resulting estimates of hyporheic extent are particularly sensitive

to the selected threshold (Ward et al., 2010b), only relative changes,

not the actual extents, are likely meaningful—ignoring issues with out-

of-plane effects (e.g., Bentley & Gharibi, 2004). Therefore, we identi-

fied the nodes for each injection and transect for which Δσ ≥ 2, 3, 4,

5 and 10% for at least one timestep during the injection to compare

patterns across injections as in Ward et al. (2012). We then estimated

the hyporheic extent by calculating the total area within the inversion

mesh represented by the nodes retained by each of these 5 thresh-

olds. We compared the directionality and magnitude of changes in

threshold-based and clustering-based extent estimates in response to

seasonally declining streamflow.

Even if the duration of repeat constant-rate injections is nearly

identical, it is difficult to perfectly replicate the same magnitude of

change in σfl, especially when surface discharge changes. Also, plateau

concentrations are not always steady during constant rate injections.

Therefore, to characterize differences in the overall forcing on σfl over

the entire BTC for each injection, we calculated the zeroth temporal

moment (μS cm�1 h) of the σfl (μS cm�1) time series from the sensor

between the two ER transects during each injection as:

Mσ,fl
0 ¼

ðtf
ti

σfldt: ð3Þ

Here t is elapsed time (hours) between the injection start time (ti)

and 96 h (tf) that constrained our analysis. Since changes in modelled

ER are sensitive to σfl, we anticipated that the magnitude of Mσ,fl
0

would influence threshold-based estimates of hyporheic extent, but

clustering may be more robust to these unintended differences

between individual injection datasets. To evaluate this expectation,

we analysed linear regressions between the estimated hyporheic

extent and Mσ,fl
0 for each injection, transect, and method for delinea-

tion (i.e., threshold or clustering).

3 | RESULTS AND DISCUSSION

3.1 | Spatial arrangement and transport
characteristics of hyporheic clusters

The total number of nodes with resolution ≥1% varied for each set of

inverted ER data, with fewer nodes retained (n) for Transect 2 than

3. Over the four injections, n ranged from 300–324 for Transect

2 and 318–408 for Transect 3. In all instances, a permutational test

(Park et al., 2009) of inter- versus intra-cluster variances identified

>50 significant branching events such that there are more statistically

unique clusters than can be individually interpreted. Therefore, we

analysed the four clusters resulting from the four highest branching

events for each transect and injection (Figure 3), which are signifi-

cantly different (p � 0.001) from each other and represent a highly

F IGURE 3 Individual injection dendrograms based of hierarchical clustering of nodal Δσ time series for Transect 2 (a–d) and Transect 3 (e–h).
Clusters are labelled by qualitative descriptors of characteristic BTCs (Figure 5). “Ref1” indicates the zone that is unresponsive (no BTC) to the
tracer addition. “Ref2” only appears in panel b and is indicative of an inversion anomaly.
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conservative evaluation of hyporheic transport heterogeneity. The

designation of these four clusters would not change unless the p-

value thresholds (all <1.7 � 10�4) set by a Bonferroni correction

based on the number of values in each test were decreased even fur-

ther by multiple orders of magnitude. Of course, the delineation of

these four clusters would also remain unchanged if the p-value

threshold was raised or uncorrected (i.e., p < 0.05), that would simply

identify even more potential clusters with ever fewer nodes in each

cluster. While our approach of interpreting the four most unique

zones joins smaller clusters formed by subsequent branching events

that exhibit significantly different Δσ responses to the tracer

(p � 0.001), all the within-cluster differences are significantly smaller

than those between clusters and no clusters from non-significant

branching events are retained. Given the ill-determined nature of

inverse modelling from surface ER data and resolution limitations, we

chose to avoid retaining large numbers of clusters (>50), wherein the

size of some clusters would potentially become too small to generate

valid statistical comparisons or meaningful hydrological interpreta-

tions. Moreover, evaluation of four clusters (only some of which will

represent regions with active exchange) is also well aligned with

numerous readily available multiple storage zone models that are fre-

quently and successfully used to represent transport and biogeochem-

ical phenomena in streams (e.g., Briggs et al., 2009; Choi et al., 2000;

Kerr et al., 2013; Knapp et al., 2017; Neilson et al., 2010).

In general, the hillslopes to either side of the stream were joined

into one cluster with additional clusters forming in a radial pattern

within the valley bottom (Figure 4). Based on relative differences in

the characteristic Δσ BTCs (Figure 5), we found that the clusters with

the most advective signatures (“fast”) occurred nearest to the surface.

These regions were ringed by the cluster which exhibited moderately

(“mod”) advective behaviour, while the least advective (“slow”) clus-
ters were located at even greater depths and lateral distances within

the subsurface. We again emphasize that these designations are quali-

tative descriptors based on relative differences for a particular injec-

tion and that further quantitative descriptions (or even set definitions)

are possible, but beyond the scope of this particular study. This spatial

organization matches both conceptual expectations of hyporheic

exchange and prior visualizations of ER data from tracer studies in

streams (e.g., Doughty et al., 2020; Ward et al., 2010a; 2010b; 2012).

However, it is notable that this pattern is neither explicitly defined by

nor provided as an input in either the inversion or the cluster-

identification algorithms.

While the nodal membership and spatial arrangement of clusters

shifted over the four injections, we observed persistent patterns in

the organization of functional zones. For Transect 2, the primary pat-

tern is the assignment of two spatially separated regions on either

side of the valley bottom to the same cluster (i.e., “fast” cluster for

injections 1 and 2, shifting to “slow” for injections 3 and 4). In con-

trast, a singular radial clustering pattern was exhibited in Transect

3 throughout all four injections. This difference highlights the ability

of hierarchical clustering to parse the effective hyporheic area into

functional zones with spatial arrangements that reflect connectivity to

surface water at a particular transect, but that are not necessarily con-

tiguous. Additionally, the location and extent of certain functional

zones (i.e., “fast” for Transect 3) change very little even as flow

changes suggesting that this functional zonation approach based on

clustering is sensitive to spatial differences in hyporheic exchange that

reflect stable physical properties. This result is consistent with prior

findings from this site that riparian water table gradients and the

extent of tracer transport into riparian zones are quite stable and pre-

dominantly down-valley even as streamflow changes by three orders

of magnitude throughout summer (Voltz et al., 2013) and reflects the

predominant understanding that in this highly constrained valley bot-

tom, advective hyporheic transport is principally influenced by steep

F IGURE 4 Inversion mesh cross-sections with individual node regions coloured by cluster membership for Transect 2 (a–d) and Transect
3 (e–h) across each of the four injections. Vertical relief is exaggerated two-fold. Clusters are labelled by qualitative descriptors of characteristic
BTCs (Figure 5). “Ref1” indicates the zone that is unresponsive (no BTC) to the tracer addition. “Ref2” only appears in panel b and is indicative of
an inversion anomaly. Stream water surfaces and cross sections are not highlighted due to the shallow nature of the stream relative to riparian
vertical relief and depth of ER modelling.
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down-valley gradients and large morphological features (i.e., Ward

et al., 2014, 2017). As expected, this results in stable spatial pattern-

ing of functional zonation that is relatively insensitive to multiple

orders of magnitude change in streamflow at seasonal timescales. In

other systems, hyporheic exchange and riparian water-table head gra-

dients are not seasonally stable (e.g., Burt et al., 2002; Vidon &

Hill, 2004; Wroblicky et al., 1998) and event fluctuations in surface

and groundwater conditions alter hyporheic exchange at shorter time-

scales (e.g., Malzone et al., 2016; Ward et al., 2013; Wondzell &

Swanson, 1996; Zimmer & Lautz, 2013). However, the clustering

method does not rely on assumptions about such behaviour and

would, therefore, be responsive to site-specific dynamics.

As noted in prior studies of this watershed (e.g., Ward

et al., 2012), the main-channel fluid-conductivity BTCs from each

injection reached a plateau quickly (<1 h) and returned to background

levels over slightly longer, but still fairly rapid time spans (<2 h) after

the injection ended (Figure 5a–d). In contrast, characteristic Δσ BTCs

for each cluster show a much more gradual shift from background

conditions and most do not reach a fully plateaued state (Figure 5e–l),

especially for injection 4 at the lowest flows. While many clusters

show an initially rapid response to the end of the injection, the rate at

which characteristic Δσ BTCs return to their pre-injection state

generally slows after a few hours, and most do not return to the initial

state even 48 h later. These behaviours reflect the sensitivity of ER to

low concentrations of solute that are retained in and slowly released

from relatively immobile pore spaces and diluted below detection

levels of in-stream fluid electrical conductivity sensors (Singha

et al., 2008; Ward et al., 2010a). Notably, the “fast” clusters load and

unload with tracer the most rapidly and exhibit the greatest change in

σ, reflecting more advective transport and greater dominance by

mobile domains. In contrast, the “slow” clusters show the smallest

and most gradual σ responses, indicative of less advective transport

and more immobile pore spaces. Clustering of inverted ER data,

therefore, categorizes portions of the subsurface in terms of BTC

behaviour that emerges from distinctive combinations of transport

phenomena (i.e., advection vs. diffusion vs. transient storage) and rel-

ative density of mobile versus immobile domains within the

subsurface.

By providing a means to quantify how these behaviours differ at

each timestep for spatially defined sets of nodes, clustering improves

upon approaches that either lump all surface ER data together

(i.e., bulk apparent-conductivity time series; Doughty et al., 2020) or

characterize spatial trends within modelled cross-sections for only a

small subset of times (i.e., Δρ cross-sectional images at a few selected
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timesteps; Ward et al., 2012). Thus, this application illustrates how

functional zones defined by their transport characteristics can be

identified and approximately mapped in space by hierarchical cluster-

ing of inverted ER data.

We interpreted reference clusters across injections and transects

that did not exhibit an obvious BTC response to the tracer addition

(“Ref1”; Figure 5) and were mostly located within adjacent hillslopes

above the streambed where exchange is unlikely (Figure 4). Generally,

this reference cluster was the largest across all injections and exhib-

ited mean Δσ traces that were flat and near zero (< ±5%) as would be

expected. Notably, however, for Transect 2 injection 2, cluster “Ref2”
showed a flat Δσ response during the injection but had a large nega-

tive Δσ step change in the post-injection period. Such a negative Δσ

response is likely an artefact of the second-derivative smoothing

incorporated into the inversion process. Detection of this artefact,

along with the notably different spatial arrangement of functional

zones, demonstrates that clustering may be a useful tool in identifying

datasets and inversions with errors than can impact subsequent ana-

lyses. Altogether, these examples demonstrate that hierarchical clus-

tering is useful for identifying spatial organization of distinct tracer

transport signals in the subsurface, distinguishing unresponsive nodes

from those in the effective hyporheic zone and detecting inversion-

process artefacts.

While main-channel fluid conductivity BTCs vary between injec-

tions (Figure 5a–d), some notable patterns reflective of seasonally

evolving subsurface solute transport emerge across the injections.

Specifically, cluster-wise Δσ BTC shapes (particularly the “fast” clus-

ters) shift temporally towards slower loading and weaker plateauing.

That change in the “fast” cluster behaviour is most apparent for

Transect 2 and to lesser extent for Transect 3. This difference

between transects is suggestive of subsurface advective transport

declining more substantially for Transect 2 as surface flow (35 L s�1

at injection 1 to 4 L s�1 during injection 4). Temporal moment analy-

sis on nodal BTCs for this dataset by Ward et al. (2014) similarly

reported larger changes in first-arrival time, mean-arrival time, and

skewness for Transect 2 than Transect 3. That analysis required

lumping data for all nodes identified as part of the effective hypor-

heic zone, while our analysis parses this into spatially defined func-

tional zones.

3.2 | Comparison of methods for estimating
effective hyporheic extent

We compared the total effective hyporheic extent amongst injections

with different streamflow rates estimated by hierarchical clustering

with Δσ thresholds (Figure 6). We limit analysis of relative differences

in extent to a single significant digit due to the imprecise nature of

models resulting from inversion of field data. Based on the clustering

method, we found that total effective hyporheic extent for Transect

2 decreased by �40% (10 to 6 m2) between the highest and lowest

flows. In contrast, for Transect 3 cluster-based analysis resulted in a

�30% increase (6 to 8 m2). For Transect 2, threshold-based estimates

of hyporheic extent were relatively stable for flows of 35 and

14 L s�1, with decreasing extents observed as flow fell from 14 to

7 and then 4 L s�1, except for Δσ ≥ 2%. For Transect 3, estimated

hyporheic extent increased as flow fell from 35 to 14 L s�1 then

declined thereafter.

Interestingly, the cluster-based estimates of total effective hypor-

heic extent are relatively more stable at the three lowest streamflow

conditions and most align with estimates from different threshold

values depending on the injection and transect. For the lowest flow

conditions, cluster-based extent estimates for both Transect 2 and

Transect 3 are very similar to those generated by a Δσ threshold of

5%, while this shifts to 10% for the 14 L s�1 injection. At the highest-

flow condition, the cluster-based extent estimate for Transect 2 was

again more similar to a 5% threshold while Transect 3 was more simi-

lar to that based on a 10% threshold. Thus, applying a single Δσ

threshold across multiple datasets does not replicate the way in which

clustering distinguishes reference from responsive signals to delimit

hyporheic extent, likely because clustering is a more robust method

than threshold-based analysis of hyporheic extent when comparing

inverse model results amongst injections.

We also compared the estimated hyporheic extent for each

method against the integral of the main channel conductivity BTCs

(Mσ,fl
0 ) of each injection. We found that, for Δσ threshold-based

methods, the estimated hyporheic extent had a strong positive linear

correlation with Mσ,fl
0 while clustering was less directionally sensitive

to Mσ,fl
0 (Figure 7). In conjunction with the relations between discharge

and hyporheic extent by method (Figure 6), this analysis demonstrates

F IGURE 6 Total effective hyporheic extent by method versus surface discharge for (a) Transect 2 and (b) Transect 3.
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that changes in the hyporheic estimate obtained by threshold analyses

are more sensitive to differences in the tracer injection than to

changes in exchange resulting from an order of magnitude variation in

discharge. Conversely, cluster-based estimates of hyporheic extent

are more directionally related to differences in discharge between

injections than to Mσ,fl
0 . This is a very important finding, especially

given the near impossibility of performing multiple injections at differ-

ent discharge conditions with exactly the same BTC integral. Beyond

methodological considerations, the relatively consistent extents

across injections resulting from clustering analysis aligns with observa-

tions from wells that exchange and water table gradients in this sys-

tem are relatively stable throughout baseflow recession (Voltz et al.,

2013). Clustering, therefore, provides a method for estimating the

spatial extent of hyporheic exchange from time-lapse ER models that

is more robust to unintended variations in BTCs that occur during

field-based tracer experiments.

Finally, it is notable that the total hyporheic extents that we esti-

mate (as well as the depth to which nodes are retained) are smaller

than those reported for prior analysis of the surface ER data (Ward

et al., 2012; 2014). This highlights an additional sensitivity not just to

the method used to delimit hyporheic extent, but also to small differ-

ences in the inversion mesh, models used for regularization, and inver-

sion settings as the underlying data are the same. We tested

clustering on those original inversions and, just as with this study, the

lower boundaries of clusters interpreted as representing the effective

hyporheic zone were all defined by resolution limitations. In other

words, the reference clusters did not extend completely and contigu-

ously beneath the hyporheic clusters due to insufficient resolution

beyond the depth of probable tracer penetration. The spatial structure

and arrangement of clusters within the hyporheic zone, however, are

not obviously subject to this issue.

Due to the ill-determined nature of the inverse problem and reso-

lution limitations, neither the ER models nor our calculated hyporheic

extents represent a precise quantification of the system. Rather, they

are simply estimates based on a smoothed approximation of subsur-

face properties, from which we more objectively, but imprecisely, map

patterns via hierarchical clustering.

We thus emphasize that it is essential to recognize that such

issues with insufficient resolution at depth, combined with the

smoothing inherent in the inversions, means that the extent estimates

should be cautiously interpreted.

3.3 | Potential extensions

While the analyses we introduce are useful for characterizing trans-

port heterogeneity within the effective hyporheic zone, they also

have the potential to improve model representation of hyporheic pro-

cesses. For instance, utilizing our proposed method to identify the

extent and characteristic BTCs for regions within the hyporheic zone

could be used to parameterize cross-sectional areas prior to inversely

tuning exchange coefficients in reactive transport models. This possi-

bility is especially important as physical parameters such as the extent

of hyporheic exchange cannot be uniquely determined solely by

observing surface-water BTCs (Bottacin-Busolin, 2019). Similar pro-

gress has been achieved using the hydrologic facies frameworks to

parameterize reduced-complexity models based on sediment property

observations (Hou et al., 2019).

The utility of clustering could also be further extended through

changes to the inversion process. Most obviously, for streams that

have a large enough cross-sectional area, the stream itself could be

included as a specified domain in the inversion mesh and subsequent

clustering. The resulting model components representing surface

water conductivity could be directly compared to field data from in-

stream conductivity sensors, rather than comparing observed surface

water conductivities to modelled bulk subsurface conductivity as in

this study (Figure 5). Post-inversion clustering could also employ con-

strained inversion techniques beyond standard regularization with

smoothing as used here. For example, using Ensemble Kalman Inver-

sions (e.g., Tso et al., 2021) would allow for improved uncertainty

quantification and the identification of sharp zone boundaries where

regularization is not applied. This may improve both estimation of

total hyporheic extent and delineation of boundaries within the

hyporheic zone. Identifying zones of interest may also be

F IGURE 7 Estimated hyporheic extent by
method versus the integral of main channel
conductivity (Mσ,fl

0 ) during each injection for
(a) Transect 2 and (b) Transect 3. Transparent
ribbons depict 95% confidence intervals on
linear regressions.
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accomplished by extending alternative inversion techniques that can

solve for specific, albeit simple, shapes reflective of hydrologic pro-

cesses and limited artefacts using geometric moments (e.g., Pidlisecky

et al., 2011). Future implementation of alternative inversion tech-

niques must be carefully guided by the ability of the practitioner to

evaluate the specific suitability, limitations, and need for prior infor-

mation (or conceptualization) about a particular site or their study pur-

pose. The method we have introduced here focuses on applications

for hydrologic scientists who may not be pushing the envelope in

terms of geophysical inversion methods.

Our approach may also be extended to identify the region over

which point-scale sampling (i.e., from wells, piezometers or mini-point

samplers) may provide representative information. This information is

potentially most useful in the context of reactive-tracer studies,

wherein metrics of reactivity or the balance of transport and reaction

timescales from particular points could be extrapolated in space based

on ER-informed functional-zone mapping. Alternatively, such

functional-zone mapping could be used to develop testable hypothe-

ses about the spatial structure of biogeochemical activity

(i.e., occurrence of redox reactions, relative reaction completion, etc.)

or microbial diversity that could then be tested by point sampling. For

instance, denitrification in the hyporheic zone plays an important role

in the attenuation of excess nutrient fluxes by streams (Gomez-Velez

et al., 2015) and techniques exist to predict net hyporheic dynamics

(e.g., Zarnetske et al., 2012), but not where denitrification occurs

throughout a particular study site without costly and intensive point-

scale sampling (e.g., Harvey et al., 2013). The weaker advective

transport that characterizes “slow” zones is likely to be associated

with slower flow paths (longer transit time) and oxygen depletion,

such that this zonation might be used to generate site-specific predic-

tions of where denitrification is more probable. Such extensions

would represent a major development in linking heterogeneity of

coupled transport and biogeochemical processes occurring at the

scale of a few metres to their aggregate significance over entire

reaches (e.g., Harvey et al., 2018).

Beyond identifying functional zones representing distinct trans-

port and connectivity signals within the hyporheic zone, there are also

potential extensions for this method that could advance synthesis

across time (injections) and space (transects or sites). It is possible to

develop methods that form clusters across merged datasets or match

clusters across datasets through post-hoc comparisons so that the

persistence and spatial evolution of functional zones can be investi-

gated. The greatest challenge to this approach will be in determining

how to normalize data given differences in forcing from separate sol-

ute injections. It is difficult, if not impossible, to perform multiple

tracer additions that generate BTCs with the same relative change in

stream water fluid conductivities, as is apparent even in this dataset

(Figure 5a–d). Importantly, this new clustering approach is less sensi-

tive (though not entirely immune) to such variations than traditional

threshold-based analyses of ER models (Figure 7), thereby offering a

method that is better suited to the inevitable complexity of conduct-

ing field-based tracer injections. Determining how to quantitatively

handle such differences amongst injections will be necessary to

differentiate changes due to the tracer input itself or subsurface trans-

port processes when examining clustering between datasets.

Another intriguing potential extension exists around supervised

clustering or similar machine-learning techniques in which cluster

characteristics are defined based on an initial training dataset contain-

ing time-lapse ER and more easily obtained ancillary measurements to

allow for prediction elsewhere. Such methods have been applied to

classify and then predict spatiotemporal evolution of other hydrologic

patterns such as seasonal soil moisture (Hermes et al., 2020) and

hydrologically homogeneous regions within catchments (Nadoushani

et al., 2018) based on topographic indices, but not, to our knowledge,

for hyporheic exchange. For instance, exploring whether high-

resolution topography data from within the river corridor (rather than

the whole catchment) could be used to predict hyporheic zonation

patterns beyond discrete transects is an intriguing possibility. Doing

so could support reduced-complexity modelling that still represents

spatial variations in functionally distinct zones at finer resolution along

stream reaches than is currently possible. The primary challenge to

this extension will be in determining which combination of metrics are

obtainable over entire reaches (at least compared to discrete ER tran-

sects) and can provide predictive power of subsurface functional

zonation.

4 | CONCLUSIONS

With the goal of developing a more objective approach to evaluating

hyporheic extent, we present a method to analyse inverted ER models

using unsupervised hierarchical clustering to delimit the extent of

hyporheic exchange and to characterize functional zones with distinct

transport behaviours within the subsurface. We used this method to

show that total hyporheic extent and the spatial structure of hetero-

geneity of exchange were predominantly stable throughout seasonal

baseflow recession (4 < Q < 35 L s�1) for adjacent (<10 m longitudi-

nally separated) transects in a highly constrained, steep mountain

stream. While prior research at this site showed that the variability of

hyporheic transport processes increases with declining streamflow

(i.e., Ward et al., 2014) and individual flow path geometries shift

(Ward et al., 2017), our findings reveal that such changes occur within

the larger-scale context of relatively unchanging cross-sectional pat-

terning of functional zonation, defined by relative transport character-

istics. This result suggests that for this site, stable morphological and

alluvial characteristics set a characteristic pattern of hyporheic

exchange heterogeneity, while forcing from surface water changes

result in smaller within zone changes to transport during baseflow

recession. We also found that the application of a single signal thresh-

old to delimit hyporheic extent across ER datasets cannot replicate

statistically supported parsing of active hyporheic and inactive refer-

ence regions in the subsurface. While clustering does not overcome

the inevitable issues of blurring in inverse models of the subsurface, it

provides a more objective approach to distinguishing where and to

what degree stream tracers may be exchanged with the subsurface

from geophysical datasets. Clustering also helps distinguish the spatial
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structure of zones with distinctive combinations of transport phenom-

ena (i.e., advection vs. diffusion vs. transient storage) and relative den-

sity of mobile versus immobile domains within the subsurface, as well

as how these structures persist or change temporally. To our knowl-

edge, this represents the first application of machine learning to statis-

tically classify spatial patterning of hyporheic exchange during tracer

studies. Additionally, this approach has the potential to inform data-

driven reduced-complexity modelling that could address known short-

falls of representing the hyporheic zone as a single well-mixed

compartment.
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